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Why Human Action "\

¢ How many person-pixels are in the video?

MOVIE

MOVIE YouTube

Many Videos are Relevant to the HUMANs




Human Action
Recognition (HAR) ::

e |t can be formulated as a VIDEO

Classification task and it requires
Holistic human behavior modeling. 4 ; » ﬁ ‘A 4
e Input: A clipped/trimmed Video m
(sequence of Images/Frames)
e Output: An Action Label *
(14 Run”




Typical Human

Action

Drink UselLaptop

Dally lemg

e Key Challenges:

o Subtle Motion

O

Igh-Intra-class Variance

o Low-Inter-class Variance

Robbery

Burglary Shopllft



Challenges::

Subtle Motion:-
Typing Keyboard Reading
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e Different Actions

e Same Background

e Almost Similar Posture



Challenge

High-Intra-class Variance:-
Drinking Drinking

¢ Same Background e Different Posture (sit, stand)

e Same Actions



Challenges:: \G

Low-Inter-class Variance:- =
Wear shoes Take off shoes

o e

¢ Same Background e Different Actions

e Almost Similar Posture



Quick Recap.:
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Video data -
Semantic
—X labels
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n*m-D data (e.g., n = 320*240, m =
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(e.g.,
1000)
Single Frame Late Fusion Early Fusion ~ Slow Fusion
i — 0 | |
= E E B -
— —— — ; %
— — — — =
— — — — =
i Vi

Classical Image Models
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Classical Video Models
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How to Tackle
Challenges::

e Usage of Different Modalities to capture unique Cues

+

Appearance Motion Posture
(RGB) (Optical Flow) (3D Poses)

e Discriminative Temporal Modeling (with Attention Mechanism and Transformer
Models)




How to Tackle
Challenges::

e Usage of Multiple Modalities in IMAGE and VIDEO models to capture category

specific unique Cues.

e Salient Feature Learning with Attention Mechanism (Spatial, Temporal,
Spatio-Temporal)
e Robust spatio-temporal Feature Correlation Learning with powerful Transformer

Models.

e Pre-training Large self-supervised, vision-language model to obtain

discriminative human and object centric cues for HAR.



Multiple Modalities::

Motion
(Optical Flow)

Appearance
(RGB)

e Computes displacement of each
pixel w.r.t. previous Frames

e Represented by you Displacement
Vectors: (i) along X-axis, (ii) along
y-axis

Tensor: [HxW x 2] x T

e Acquisition

o Flow Camera

Tensor: [Hx W x 3] x T
o Flow Estimation Algo. (TVFI,
FlowNet, PwcNet)

Red Green
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Posture
(3D Poses/Skeletons)

e 3D Coordinates of ‘N’ key joints on
Human body Tensor.

Tensor: [N x| xT |

e Acquisition
o Kinect Camera

o Pose Estimation Algo. from
RGB images (LCNet,
OpenPose, YOLO-V7 Pose)
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Benefits of Combining
Multiple Modalities::

* Provide complementary information.

Wear glasses

i L

Take off glasses

Optical flow



Benefits of Combining
Multiple Modalities::

Flow
Camera Flow
Estimation (TVF1, ElowNet...)
Algo
Camera Fi-‘iiz’q
Scene —— (F2gf Deep Net

_ Pose
m\ Estimation (LCRNet, Openpose...)
Camera Algo



Drawbacks of Different
Modalities::

e Optical Flow:

o Time consuming in extracting
Flow from RGB

o Scenario information is missing ————

e 3D Poses:

o Object information is missing

Use fridge Use cupboard

Irrelevant Objects (Laptop, Books) Info.

e RGB:

o Contains Most Information but
can be Noisy as well.

Action: Sit Down




Attention Mechanism:;

e Primary purpose of Attention: To imitate e
human visual cognitive systems and focus *
on essential features. (or) Learn how to
pick relevant information from input data

e Key ldea: To focus on the significant parts
IN an iImage and suppress unnecessary

iINnformation. Tme-1  Tme2 |Tme3  Tme< | Times  Times

e CNN with Attention: are used to make
CNN learn and focus more on the
Important information, rather than
learning non-useful background
iINformation. 5 Taeyihily enough foranyinterence?

Focus in the Spatial space is required!

Spatial Attention Temporal Attention

Original Image Focuson ‘Cat’ Focus on [ ‘Dog’



Classical Attention
Mechanism:;

e Squeeze-and-Excitation Attention
(Channel Attention)

e Convolutional Block Attention
Module (Channel + Spatial Attention)

e Spatial-Temporal Attention

e Self-Attention

The girl is drinking water from a bottle

Do we really need the whole video to infer that?

» Isn’t this enough for an inference?

Focus in the Spatial space is required!

Time -1

Time-2 | Time-3 Time -4

Time -5

Time 6

Spatial Attention

Temporal Attention




Squeeze-and-Excitation Attention::

e Observation in CNN:

o Feature Extraction from CNN shrinks the spatial Dimension and
expands the channel dimension

X
o All channels are weighted equally when considering the output >t Fi;l
feature map v
o Key Idea: Assign each channel a different weightage based on
how important each channel is. | X
3 main Parts of SE: _ Blocki | Lo c
i=[1,2,3,4,5]
Sgqueeze: Global Average Pooling is performed on the output feature map of the \¢“ E}l;b‘al “““““ |
. I
CNN layer across H and W and the result of output tensor shape is1x1x C. T 1% 1xC :-
° ° S sy e g o
EXxcitation: Vector from the previous operation is passed through two successive — ‘;‘C‘ RN R |
Fully-Connected Layers. This serves the purpose of fully capturing channel-wise : T e :
dependencies that were aggregated from the spatial maps. A RelLU activation is [ |
performed after the first FC layer, while the sigmoid activation is used after the o R
second FC layer. In the paper, there is also a reduction ratio such that the T FC : Excitation
intermediate output of the first FC layer is of a smaller dimension. The final output of — IxIxC
this step also has a shape (1 x1x C). | Sigmoid :
IxX1xC :
Rewelght: Lastly, the output of the computation step is used as a per-channel )/ L e e - - - - - = - |
weight modulation vector. It is simply multiplied with the original input feature map Scale HxWxC  Reweight
of size (H x W x C). This scales the spatial maps for each channel according to their ¢ &

‘importance’. (b)



Squeeze-and-Excitation Attention::

e Observation in CNN: .
o Feature Extraction from CNN shrinks the spatial <
Dimension and expands the channel dimension
o All channels are weighted egually when " Block-i S
considering the output feature map ’=“’2’3’4’5]\ _____________
"[ Global I
. . : pooling Ix1xC |-
e Key Idea: Assign each channel a different e e PETRT
weightage based on how important each channel L= e
1S [_ReLU SELSEyE 1
. ! Y I
i Ff LX1XC i
: Sigmoid i s i

(b)



Squeeze-and-Excitation Attention::

3 main Parts of SE:

Squeeze: Global Average Pooling is performed on the output 5 B
feature map of the CNN layer across H and W and the result of e
output tensor shapeis1x1xC. ’
Excitation: Vector from the previous operation is passed | x
through two successive Fully-Connected Layers. This serves the Block-i
. . . : HxWxC

purpose of fully capturing channel-wise dependencies that were i=lb2 550l
aggregated from the spatial maps. A ReLU activation is N = |
performed after the first FC layer, while the sigmoid activation is | pooling N :-
used after the second FC layer. In the paper, there is also a .L-‘-‘-é‘-‘- ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ ,
reduction ratio such that the intermediate output of the first FC — G S
layer is of a smaller dimension. The final output of this step also | ReLU Ix1xC/r |
has a shape (1x1x C). I F*C . Excitation

. : ; L1 € :
Reweight: Lastly, the output of the computation step is used I ;
as a per-channel weight modulation vector. It is simply I — PXIXC
multiplied with the original input feature map of size (HxW x C Scale | pxwxc 'ENCEH
). This scales the spatial maps for each channel according to their ' <

‘importance’. (b)



Squeeze-and-Excitation Attention::

SE Blocks can be easily integrated with many existing CNNs like Inception V1,

ResNets, etc.

X X
X X ;
: ‘ Residual Residual :
Inception Inception XWX C HxWxC
¥ X _ Global pooling [ . . -
Global pooling X $
Inception Module ) Stk EC G
IX1x—
FC 1x%1Xx £ ResNet Module i r
: ; ReLU C
c 1x1x ;
RelLU PR - T
: s I1x1xC
Ff X IRC ! ;
Sigmol
: . = 1x1xC
Sigmoid 1S /
/ Scale :
HxWxC
i HxWxC
l = HxWxC
X "
X

SE-Inception Module SE-ResNet Module

Fig. 3. The schema of the original Residual module (left) and the SE
ResNet module (right).

Fig. 2. The schema of the original Inception module (left) and the SE-
Inception module (right).



Convolutional Block Attention
Module (CBAM)::

e Key Idea: To combine both channel and Convolutional Block Attention Module
- - 4 N
spatial attention, thus CBAM has two i s el i i i P
sequential sub-modules: Module Attention

\ j 5 Module g )

o Channel Attention Module (CAM): Similar
to SE attention with a small modification,
l.e. Instead of single AVERAGE pooling,

CAM applies both AVERAGE and MAX a s CRNE Attention Module e

pooling to preserves much richer Vi ™ jﬁ

contextual cues. S O~
. . : \_ Input feature F e E e o

o Spatial Attention Module (SAM): is

three-fold sequential operations, il apatial.aeaton Macle

(i)Channel Pool that decomposes a (c x h { oyer

x W) dimension input tensor to 2 channels, =1 (=

l.e. (2 x h x W), where each of the 2 \ Crame-refined [MaxPool, AvgPool] Spatial Attntion

channels represent Max Pooling and
Average Pooling across the channels. (ii)
Convolutional Layer, (iii) Batch Norm

e CBAM is applied at every convolutlonal
block In deep networks to get subsequent
"Refined Feature Maps" from the "Input
Intermediate Feature Maps".



Convolutional Block Attention
Module (CBAM)::

it

Previous
conv blocks

Channel attention

BN

Spatial attention

‘ @oonv

Fll
g

ResBlock + CBAM

Next
conv blocks

-

/

Placement of Spatial and Channel Attention Modules sequentially.

C3 C4
Conwvolutional Fikers

s

.

ct G2
Convolutional Filters

Resioual Block \

C3 Ca
Convolutonal Filters

Placement of CBAM module in ResNet architecture.




e Key ldea: To combine both channel and

spatial attention, thus CBAM has two
sequential sub-modules:

o Channel Attention Module (CAM): Similar
to SE attention with a small modification, I.e.

Instead of single AVERAGE pooling, CAM
applies both AVERAGE and MAX pooling to
preserves much richer contextual cues.

Spatial Attention Module (SAM): is
three-fold sequential operations, (i)Channel
Pool that decomposes a (c x h x w)
dimension input tensor to 2 channels, i.e. (2
x h x w), where each of the 2 channels
represent Max Pooling and Average Pooling
across the channels. (ii) Convolutional
Layer, (iii) Batch Norm

Spatio-Temporal Attention::

Input clip

14

Skeletoninput

y

| 4
y

7

Ly 13D base

Skeleton input

Separable

spatio-temporal
attention module

tXmXnXc

(m x n) Spatial Attention weights

o N
|
0Bl

Convolutional feature
map from 13D

Separable
spatio-temporal
attention module

(t) Temporal Attention weights

Predictions

€ B
> 1 B | |
‘ DTN TN | W ELE LB
_ = 9
Skeleton input
| 4

B

>

il
il
(m x n) Spatial
Attention weights

LE H 1 H me

re . (t) Temporal

Attention weights




Self Attention::

- g TXD

e Each element attends to every other fx) . l ~__transpose
element. (or) Computes the correlation =N
among the feature vectors in as
sequence.

Attention Map (Att)

1x7 conv

| _oix) ﬁLD:

e Each feature vector becomes query, i 5 i:
key, and value from the input 5™ oo H TXD
em.beddlngs. by multiplying by a B, . =
Welg ht matrlx. Feature Maps (X) hix) ﬂ»__ﬁ ‘,‘ .
- TXD i H
e Self-attention can enable Iong-range | g —
temporal dependency modeling for 1x1 conv 90 TXD Feature Maps

action recognition. B TXD



Self Attention::

e Goal: To capture dependencies and relationships within input sequences.

e Each element attends to every other element. (or) Computes the correlation among the
feature vectors in as sequence.

e How it Works:

o It transforms the input sequence into
three vectors: query, key, and value.
These vectors are obtained through

linear transformations of the input. I AD

| fx}) o transpose Attention Map (Att)

o Second, the attention mechanism
calculates a weighted sum of the
values based on the similarity
between the query and key vectors.

1x1 conv softmax

glx) HF

o The resulting weighted sum, along i 1x1 conv JF. TXD
with the original input, is then passed ..ot '
through a feed-forward neural Feature Maps (x) | |
network to produce the final output. TXD 1 H

| — | Self-attention
1x1 conv == TXD Feature Maps

TXD

TXT




Self Attention::

Self Attention in Non-Local Network::
® BeneﬁtS: zﬁ'l'xHxle()}l

o Long-range dependencies: It allows Ix1x]1
the model to capture relationships IxHxWx512
between distant elements in a softmax THWx 512
sequence, enabling it to understand THWXTHW |

complex patterns and dependencies.

THWx3512 SI2xTHW THWx512

o Contextual underStandin93 By IxHxWx312 | TxHxWx512 TxHxWxS5I2

attending to different parts of the 6 1xix1 | [o: 1xix1 | [e ixixi
INput sequence, self-attention helps 1 ) )
the model understand the context x w10z

and assign appropriate weights to 4[

each element based on its relevance.

. 13D Network
o Parallel computation: [tcan be

computed in parallel for each element
IN the sequence, making it
computationally efficient and scalable
for large datasets.




Transformer Models:

e Transformer are standard architecture for
sequence modeling in Natural Language
Processing.

e A Pure Transformer:

o Performs excellent on standard computer
vision tasks (like image classification) when
applied directly to sequence of image patches
or tokens.

o Achieves State-of-the art results on benchmark
problems and can learned representations are
transferable to other problem domains

o Key Components:
o Self-Attention or Multi-Head Attention
o Position Embedding

o Feed Forward

Output
Probabilities
{
Softmax
t
Linear
—t—
Add & Norm
Feed
Forward
4 4]
e “ I
a ~\ Add & Norm
£4d & Norm Multi-Head
Feed Attention
Forward A7 7 7 N x
u A p: y
Nix Add & Norm
Add &'Norm Masked
Multi-Head Multi-Head
Attention Attention
At A ¢t )
e J \_ =
PosMonal<S;>_<> Positional
. + 4+ .
Encoding A ?_® Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)



Transformer Models:

OQutput
e Transformer are standard architecture for PfObafb‘““eS
sequence modeling in Natural Language Softmax
Processing. L
t
e A Pure Transformer: (=T
o Performs excellent on standard computer L il
vision tasks (like image classification) when ) 1 J
applied directly to sequence of image patches G B Add & Nom
W T ] Multi-Head
or tokens. Food it
. Forward B T | N x
o Achieves State-of-the art results on benchmar 2 4 ;
problems and can learned representationsare e £dd & horm
transferable to other problem domain MUt Hload Mum‘e,ﬁ_He';d
b Attention Attention
o Key Components: 1 7 1 7
, , , & Y & y
o Self-Attention or Multi-H Attention Positional ®_@ I\ Positional
L : —”| Encoding x ?_® Encoding
o Position Embeddi == Somo
Embedding Embedding
o Feed Forward f I
Inputs Outputs

(shifted right)




Transformer Models:

Self-Attention or Multi-Head Attention Position Embedding

Linear

i '.

Depth = e “
Sca|ed DOt-.PI’OdUCt l N [ sin(wy.t) | 60 f(t)(i) _ {sin(wk.t), ifi = 2k

Attenthn 4 cos(wi. t) B = cos(wg.t), ifi=2k+1
sin(ws. t)
ﬂ - - ﬂ 5 cos(ws. t) Wy = ! TVE
Llne Llnear Linear Pi = e &
\ :
sin(wg/2. )




Vision Transformer (ViT):

e In ViTs, images are represented as sequences,

and class labels for the image are predicted,

which allows models to learn image structure

Independently.

e How ViT works?

O

O

Split an iImage into patches (Tokenize)
Flatten the patches

Produce lower-dimensional linear
embeddings from the flattened patches

Add positional embeddings

Feed the sequence as an input to a
standard transformer encoder (for
INnteraction among tokens)

Pretrain the model with image labels (fully
supervised on a huge dataset)

Finetune on the downstream dataset for
Image classification

Class
Bird

Car

§

Patch + Position
Embedding

* Extra learnable
[class] embedding

SN E
'%‘-,-‘:‘
Al e

Ball [

Vision Transformer (ViT)

MLP
Head

Transformer Encoder

-ddaaddddd

Linear Projection of Flattened Patches

| L]

| Ev

Transformer Encoder
A
| (:) |
MLP

I

Norm

Multi-Head
Attention

1]

Norm

ee——

Embedded
Patches




Vision Transformer (VIiT):

M
o
e

ultiple blocks in the VIT encoder, and each
ock consists of three major processing

ements:

Layer Norm: It keeps the training process
on track and lets the model adapt to the
variations among the training images.

Multi-Head Attention Network: Generating
attention maps from the given embedded
visual tokens. These attention maps help
the network focus on the most critical
regions in the image, such as object(s).

Multi-Layer Perceptrons (MLP): MLP is a
two-layer classification network with GELU
(Gaussian Error Linear Unit) at the end. The
final MLP block also called the MLP head, is
used as an output of the transformer.

Transformer Encoder

Iix

=

MLP

\

Norm

(D—

Multi-Head
Attention

L1 ]

Norm

Embedded
Patches

......

Position embedding similarity
1 1 1 1111
AN
-
aEElRER
SRR EE
e
i
6 7

w

w

Input patch row
S

2 5 J.1.1.
4 1111
1 2 3 4 5

Input patch column

1

Cosine similarity



VIT vs. CNN:

e VT has more similarity between the representations obtained in shallow and deep layers
compared to CNNSs.

e Unlike CNNs, VIT obtains the global representation from the shallow layers, but the local
representation obtained from the shallow layers is also important.

e Skip connections in VIT are even more influential than in CNNs (ResNet) and substantially
Impact the performance and similarity of representations.

e VIl retains more spatial information than CNN.
e VIT can learn high-quality intermediate representations with large amounts of data.

e Vil is more Scalable and Efficient compared to CNN.



A Video Vision Transformer (ViVIT):
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Figure 2: Uniform frame sampling: We simply sample n; frames,
and embed each 2D frame independently following ViT [1%].

Figure 3: Tubelet embedding. We extract and linearly embed non-
overlapping tubelets that span the spatio-temporal input volume.




A Video Vision Transformer (ViVIT):

| |
| |
| 1
| |
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1 |
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| | Tempordl | ! ! 1 | ‘
Layer Norm | o] 18 L Fue |}
_,8_‘ 1 | i ! E : E Spatial || Tempora i : Temporal Transformer Encoder
: | | | s\ X
g Temporal il ! ' | ' 4
8 Lx Self-Attention | W | | ] 5 6
N vy ’l I | s ’| ::G E ; ses
------------------ | pumcmccanfiaacaaany v
Embed to 8 : Multi-Head ; : : : : :' : v _ Spatial Transformer Spatial Transformer Spatial Transformer
tOkenS Dot-Product : Spatial : I : : :[ T ]: % " Encoder Encoder Encoder
e | ! iR ' ! TS @ :
' : “en s | : : : : i Spatial {| Temporal | 5 2 -
' Kt vTo : —_— | (N | \ y s E WL
v | Spatial iR : | | E "
! iinindd | | \ o
8 Wy o ’ : I G S ! Embed to tokens
Layer Norm | [
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Figure 4: Factorised encoder (Model 2). This model consists of
—\__,l s R l two transformer encoders in series: the first models interactions
( Tokenembeddng )—v® S §. {2 51 % 5 |® between tokens extracted from the same temporal index to produce
3 = . . .
Vi a latent representation per time-index. The second transformer
Il Pnvamimiris 4 models interactions between time steps. It thus corresponds to a
“late fusion” of spatial- and temporal information.

Figure 5: Factorised self-attention (Model 3). Within each trans-
former block, the multi-headed self-attention operation is fac-
torised into two operations (indicated by striped boxes) that first
only compute self-attention spatially, and then temporally.




Swin Transformer:

e Swin Transformer builds hierarchical feature maps by
merging image patches in deeper layers compared to ViTs
that produces feature maps of a single low resolution.

e |t isenabled by shifted window to build hierarchical feature

Mmaps.
PR A R S AL TR e,
: l' 7! €>‘ 2 : : zl+1€54; ‘l
1 | | |
H. W H W H W H. W H_ W I ! 1 '
TXTX48 TXTXC ?X?ch I—GXEX4C 32X§X80 I : M;‘P : | M;'P :
D —— R —— e sEaEsEm, e mmmmsmeee 1
Stage | " Stage2 t Stage 3 ‘' ‘ Stage4 - | i ;
|: ag \” g \l Il g : : age \| : : IN : : IN :
Vel D I: & X1 1 & Mg 3 4 N\ 1 | X : | vy |
al' |8 : 50 K 1| oep ! | I ! I
HxWx3 |L], |3 :: £ T E | éo | 1, 69(_ ([0 21+1€9<_ :
=1 N B Swin 1 |8 Swin | 5 Swin : : & Swin |, ! : : I :
Images [P & —:') 5 = Transformer ':—:) 2. P! Transformer ':'? = | Transformer | = [ Transformer > ! 1 [W-MSA | : SW-MSA| | 1
Sl | = Block 1! |5 Block |41 |S Block |!''|S Block : i1 5 N I '
1| 8 | R | § e 1! L :
Rl 5 :: - N i3 |[™ T LN ' : LN I
: \. 7 i \ 24 5 \. Jun \. T HT vl R !
\\ ------- X -2--” \\ ------- X-z--’l \~ ------ >-<6--‘,' ‘\ ------- )iz--’/ l ‘\_z _____ ,, \‘_E-___-/,
(a) Architecture (b) Two Successive Swin Transformer Blocks

Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with
Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.
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Figure 3: An illustrated example of 3D shifted windows. The input size 7/ x H' x W’ is 8 x8x 8, and
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Figure 2: An illustration of two succes-

Figure 1: Overall architecture of Video Swin Transformer (tiny version, referred to as Swin-T). ; . :
sive Video Swin Transformer blocks.



Masked Auto Encoder (MAE):

v
v

MAE are scalable self-supervised learners for computer vision:

Mask random patches of the input image and reconstruct the missing
pixels

Asymmetric Encoder-Decoder Architecture
* Visible subset of patches (without mask tokens) - Encoder
« Latent representation & Mask tokens — Decoder (lightweight)

Masking high proportion of the input image, e.g., 75%, yields a non-trivial
and meaningful self-supervisory task

Accelerate training (by 3x or more) and improves accuracy
Learning high-capacity models that generalizes well

« Vanilla ViT-H [] achieves the best accuracy (87.8%) among methods
that use only ImageNet-1K data

ransfer performance in downstream tasks outperforms supervised pre-
training and shows promising scaling behavior




Background of MAE::

Autoencoder
v" Encoder maps an input to a latent representation
v" Decoder reconstructs the input
v E.g., PCA and k-means are autoencoders
v Denoising autoencoders (DAE) [1] are a class of autoencoders that corrupt an
iInput signal and learn to reconstruct the original, uncorrupted signal
v" A series of methods can be thought of as a generalized DAE under different

corruptions, e.g., masking pixels or removing color channels

Self-supervised Learning

v

Early self-supervised learning approaches often focused on different
pretext tasks [] for pre-training

Contrastive learning [] has been popular, e.g., [], which models image
similarity and dissimilarity (or only similarity []) between two or more views

Contrastive and related methods strongly depend on data augmentation []

Autoencoding pursues a conceptually different direction, and it exhibits
different behaviors



MAE::

)

encoder

input target
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Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) 1s masked out. The
encoder 1s applied to the small subset of visible patches. Mask
tokens are introduced «afier the encoder. and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder 1s discarded and the encoder 1s applied to uncorrupted
images to produce representations for recognition tasks.



VideoMAE::
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— - Decoder
1 T
Downsampled video clip Tube masking with an extremely high ratio Tokens wio [M] r__.__A r__. : Target video clip
keeping masking t_ FL—J
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Figure 1: VideoMAE performs the task of masking random cubes and reconstructing the missing ones
with an asymmetric encoder-decoder architecture. Due to high redundancy and temporal correlation
in videos, we present the customized design of tube masking with an extremely high ratio (90% to
95%). This simple design enables us to create a more challenging and meaningful self-supervised
task to make the learned representations capture more useful spatiotemporal structures.
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CLIP:: Contrastive Language-lmage\
Pre-training -

Background of Image-Text Pair

N ( _ . )
This is an A kid Welcome | This is a I3 Bl This is a
image of a doing a to my picture of ‘»ikﬁy picture of
flamingo. kickflip. | website! my dog. my cat.

J J J

Image-Text Pairs dataset Video-Text Pairs dataset Multi-Modal Massive Web (M3W) dataset

[N=1, T=1, H, W, C] IN=1, T>1, H, W, C] [N>1, T=1, H, W, C]
e N: Number of visual inputs for a single example
e T: Number of video frames
e H,W, C: height, width, color channels



CLIP:: Contrastlve Lang uage-lmagq

(1) Contrastive pre-training e 400 million (image, text) pairs collected

B from Internet.

Pepper the |||

aussie pup |||—> 104 e Trained modifications of ResNet-50
‘ l l J' J' and ViT-B

e Batch size 32 768 for 32 epochs

—» 1 h'h | LT [ LT3 | . | Ii'TN
N S s e The largest ResNet model, RN50x64,
- : took 18 days to train on 592 V100
3Ty | Il | .. |I3Tn

o
o

GPUs while the largest Vision
Transformer took 12 days on 256
V100 GPUs




CLIP for Zero-shot Classification

m
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Zero-Shot CLIP vs. Linear Probe on ResNet50

Figure 5. Zero-shot CLIP is competitive with a fully super-
vised baseline. Across a 27 dataset eval suite, a zero-shot CLIP
classifier outperforms a fully supervised linear classifier fitted on
ResNet-50 features on 16 datasets, including ImageNet.



CLIP Limitations ::

e poor generalization to images not covered
in its pre-training dataset (MNIST)

e counting the number of objects in an image

e predicting how close the nearest object is in
a photo

e CLIP's zero-shot classifiers can be sensitive
to wording or phrasing and sometimes
require trial and error “prompt engineering”
to perform well.
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Summary::

Combining Multiple
Modalities for HAR

f
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