UNIVERSITÉ : Corá

ACTION Recognition

Snehashis MAJHI

Email: snehashis.majhi@inria.fr

Ph.D. Candidate @STARS Team INRIA

Collaboration with TOYOTA Motor Europe

TABLE OF CONTENT

- **Introduction to HAR: Human Action Recognition and Challenges**
- **Multiple Modalities in HAR**
- **Attentions in HAR (Spatial, Temporal, Self Attention)**
- **Recent Popular Techniques**
 - Transformer Models (ViT, ViviT, Swin, VideoSwin)
 - Self-supervised Models (MAE, VideoMAE)
 - Vision and Language Models (CLIP)

Why Human Action

• How many person-pixels are in the video?

MOVIE

TV

YouTube

Many Videos are Relevant to the HUMANs

Human Action Recognition (HAR) :: • It can be formulated as a VIDEO

Classification task and it requires Holistic human behavior modeling.

- Input: A clipped/trimmed Video (sequence of Images/Frames)
- Output: An Action Label

Typical Human Actions:

Daily Living

Drink UseLaptop Read

Burglary

- Key Challenges:
 - Subtle Motion
 - High-Intra-class Variance
 - Low-Inter-class Variance

Wild Abnormality

Robbery

Challenges:

Subtle Motion:-Typing Keyboard

• Same Background

• Almost Similar Posture

Reading

Challenges:

High-Intra-class Variance:-Drinking

Same Background

Same Actions

Drinking

Different Posture (sit, stand)

Challenges:

Low-Inter-class Variance:-

Wear shoes

Take off shoes

Same Background

• Almost Similar Posture

Different Actions

Quick Recap.::

Classical Image Models with Temporal Models

How to Tackle Challenges:

Usage of Different Modalities to capture unique Cues

Motion Appearance (Optical Flow) (RGB)

Posture (3D Poses)

• Discriminative Temporal Modeling (with Attention Mechanism and Transformer Models)

How to Tackle Challenges:

- Usage of Multiple Modalities in IMAGE and VIDEO models to capture category specific unique Cues.
- Salient Feature Learning with Attention Mechanism (Spatial, Temporal, **Spatio-Temporal**)
- Robust spatio-temporal Feature Correlation Learning with powerful Transformer Models.
- Pre-training Large self-supervised, vision-language model to obtain discriminative human and object centric cues for HAR.

Multiple Modalities:

Appearance (RGB)

Tensor: [H × W × 3] × T

Motion (Optical Flow)

- Computes displacement of each pixel w.r.t. previous Frames
- **Represented by you Displacement** \bullet Vectors: (i) along X-axis, (ii) along y-axis

Tensor: [H × W × 2] × T

- Acquisition
 - Flow Camera 0
 - Flow Estimation Algo. (TVF1, Ο FlowNet, PwcNet)

- - Ο
 - Ο

Posture (3D Poses/Skeletons)

3D Coordinates of 'N' key joints on Human body Tensor.

Tensor: [N ×] × T

• Acquisition

Kinect Camera

Pose Estimation Algo. from **RGB** images (LCNet, **OpenPose, YOLO-V7 Pose)**

Benefits of Combining Multiple Modalities::

Provide complementary information. •

Sit down

3D poses

Take off glasses

Optical flow

Deep Net

Drawbacks of Different Modalities:

- Optical Flow:
 - Time consuming in extracting Flow from RGB
 - Scenario information is missing

3D Poses:

• Object information is missing

Use fridge

Irrelevant Objects (Laptop, Books) Info.

Action: Sit Down

RGB:

Contains Most Information but Ο can be Noisy as well.

Use cupboard

Attention Mechanism::

- **Primary purpose of Attention:** To imitate human visual cognitive systems and focus on essential features. (or) <u>Learn how to</u> pick relevant information from input data
- **Key Idea:** To focus on the significant parts in an image and suppress unnecessary information.
- CNN with Attention: are used to make CNN learn and focus more on the important information, rather than learning non-useful background information.

'Cat' Focus on

Focus on ['Dog'

Spatial Attention

The girl is drinking water from a bottle

Do we really need the whole video to infer that?

Temporal Attention

Classical Attention Mechanism:

- Squeeze-and-Excitation Attention (Channel Attention)
- Convolutional Block Attention
 Module (Channel + Spatial Attention)
- Spatial-Temporal Attention
- Self-Attention

Isn't this enough for an inference?

Focus in the **Spatial** space is required!

Spatial Attention

The girl is drinking water from a bottle

Do we really need the whole video to infer that?

Squeeze-and-Excitation Attention::

Observation in CNN:

- Feature Extraction from CNN shrinks the spatial Dimension and expands the channel dimension
- All <u>channels are weighted equally</u> when considering the output feature map
- **Key Idea:** Assign each channel a different weightage based on how important each channel is .

3 main Parts of SE:

Squeeze: Global Average Pooling is performed on the output feature map of the CNN layer across H and W and the result of output tensor shape is $1 \times 1 \times C$.

Excitation: Vector from the previous operation is passed through two successive Fully-Connected Layers. This serves the purpose of fully capturing channel-wise dependencies that were aggregated from the spatial maps. A ReLU activation is performed after the first FC layer, while the sigmoid activation is used after the second FC layer. In the paper, there is also a reduction ratio such that the intermediate output of the first FC layer is of a smaller dimension. The final output of this step also has a shape $(1 \times 1 \times C)$.

Reweight: Lastly, the output of the computation step is used as a per-channel weight modulation vector. It is simply multiplied with the original input feature map of size ($H \times W \times C$). This scales the spatial maps for each channel according to their 'importance'.

Squeeze-and-Excitation Attention:

• Observation in CNN:

- Feature Extraction from CNN shrinks the spatial Dimension and expands the channel dimension
- All <u>channels are weighted equally</u> when considering the output feature map
- **Key Idea:** Assign each channel a different weightage based on how important each channel is .

Squeeze-and-Excitation Attention::

3 main Parts of SE:

Squeeze: Global Average Pooling is performed on the output feature map of the CNN layer across H and W and the result of output tensor shape is $1 \times 1 \times C$.

Excitation: Vector from the previous operation is passed through two successive Fully-Connected Layers. This serves the purpose of fully capturing channel-wise dependencies that were aggregated from the spatial maps. A ReLU activation is performed after the first FC layer, while the sigmoid activation is used after the second FC layer. In the paper, there is also a reduction ratio such that the intermediate output of the first FC layer is of a smaller dimension. The final output of this step also has a shape $(1 \times 1 \times C)$.

Reweight: Lastly, the output of the computation step is used as a per-channel weight modulation vector. It is simply multiplied with the original input feature map of size (H x W x C). This scales the spatial maps for each channel according to their 'importance'.

Squeeze-and-Excitation Attention: SE Blocks can be easily integrated with many existing CNNs like Inception V1,

ResNets, etc.

Fig. 2. The schema of the original Inception module (left) and the SE-Inception module (right).

Fig. 3. The schema of the original Residual module (left) and the SE ResNet module (right).

SE-ResNet Module

Convolutional Block Attention Module (CBAM)::

- Key Idea: To combine both channel and spatial attention, thus CBAM has two sequential sub-modules :
 - **Channel Attention Module (CAM):** Similar to SE attention with a small modification, i.e. instead of single AVERAGE pooling, CAM applies both AVERAGE and MAX pooling to preserves much richer contextual cues.
 - Spatial Attention Module (SAM): is Ο three-fold sequential operations, (i)Channel Pool that decomposes a (c × h × w) dimension input tensor to 2 channels, i.e. $(2 \times h \times w)$, where each of the 2 channels represent Max Pooling and Average Pooling across the channels. (ii) **Convolutional Layer, (iii) Batch Norm**

Convolutional Block Attention Module (CBAM)::

Placement of Spatial and Channel Attention Modules sequentially.

Placement of CBAM module in ResNet architecture.

Spatio-Temporal Attention::

- Key Idea: To combine both channel and spatial attention, thus CBAM has two sequential sub-modules :
 - Channel Attention Module (CAM): Similar to SE attention with a small modification, i.e. instead of single AVERAGE pooling, CAM applies both AVERAGE and MAX pooling to preserves much richer contextual cues.
 - Spatial Attention Module (SAM): is three-fold sequential operations, (i)Channel Pool that decomposes a (c × h × w) dimension input tensor to 2 channels, i.e. (2 × h × w), where each of the 2 channels represent Max Pooling and Average Pooling across the channels. (ii) Convolutional Layer, (iii) Batch Norm

Self Attention::

- Each element attends to every other element. (or) Computes the correlation among the feature vectors in as sequence.
- Each feature vector becomes query, key, and value from the input embeddings by multiplying by a weight matrix.
- Self-attention can enable long-range temporal dependency modeling for action recognition.

Self Attention:

- Goal: To capture dependencies and relationships within input sequences.
- Each element attends to every other element. (or) Computes the correlation among the feature vectors in as sequence.
- How it Works:
 - It transforms the input sequence into three vectors: query, key, and value. These vectors are obtained through linear transformations of the input.
 - Second, the attention mechanism calculates a weighted sum of the values based on the similarity between the query and key vectors.
 - The resulting weighted sum, along Ο with the original input, is then **passed** through a feed-forward neural **network** to produce the final output.

Self Attention:

Benefits:

- Long-range dependencies: It allows the model to capture relationships between distant elements in a sequence, enabling it to understand complex patterns and dependencies.
- **Contextual understanding:** By attending to different parts of the input sequence, self-attention helps the model understand the context and assign appropriate weights to each element based on its relevance.
- **Parallel computation:** Itcan be Ο computed in parallel for each element in the sequence, making it computationally efficient and scalable for large datasets.

Self Attention in Non-Local Network:

Transformer Models:

- Transformer are standard architecture for sequence modeling in Natural Language Processing.
- A Pure Transformer:
 - Performs excellent on standard computer vision tasks (like image classification) when applied directly to sequence of image patches or tokens.
 - Achieves State-of-the art results on benchmark problems and can learned representations are transferable to other problem domains

• Key Components:

- Self-Attention or Multi-Head Attention
- Position Embedding
- Feed Forward

Transformer Models:

- Transformer are standard architecture for sequence modeling in Natural Language Processing.
- A Pure Transformer:
 - Performs excellent on standard computer vision tasks (like image classification) when applied directly to sequence of image patches or tokens.
 - Achieves State-of-the art results on benchmark problems and can learned representations are transferable to other problem domains

• Key Components:

- Self-Attention or Multi-Head Attention
- Position Embedding
- Feed Forward *

Add & Norm

Feed

Forward

Add & Norm

Multi-Head

Attention

Embedding

Inputs

N×

Positional

Encoding

Transformer Models:

Self-Attention or Multi-Head Attention

Position Embedding

Vision Transformer (ViT):

• In ViTs, images are represented as sequences, and class labels for the image are predicted, which allows models to learn image structure independently.

• How ViT works?

- Split an image into patches (Tokenize)
- Flatten the patches
- Produce lower-dimensional linear embeddings from the flattened patches
- Add positional embeddings
- Feed the sequence as an input to a standard transformer encoder (for interaction among tokens)
- Pretrain the model with image labels (fully supervised on a huge dataset)
- Finetune on the downstream dataset for image classification

Vision Transformer (ViT):

- Multiple blocks in the ViT encoder, and each block consists of three major processing elements:
 - Layer Norm: It keeps the training process on track and lets the model adapt to the variations among the training images.
 - Multi-Head Attention Network: Generating attention maps from the given embedded visual tokens. These attention maps help the network focus on the most critical regions in the image, such as object(s).
 - Multi-Layer Perceptrons (MLP): MLP is a two-layer classification network with GELU (Gaussian Error Linear Unit) at the end. The final MLP block also called the MLP head, is used as an output of the transformer.

Vit vs. CNN:

- ViT has more similarity between the representations obtained in shallow and deep layers compared to CNNs.
- Unlike CNNs, ViT obtains the global representation from the shallow layers, but the local representation obtained from the shallow layers is also important.
- Skip connections in ViT are even more influential than in CNNs (ResNet) and substantially impact the performance and similarity of representations.
- Vit retains more spatial information than CNN.
- Vit can learn high-quality intermediate representations with large amounts of data.
- ViT is more Scalable and Efficient compared to CNN.

A Video Vision Transformer (ViViT):

Figure 5: Factorised self-attention (Model 3). Within each transformer block, the multi-headed self-attention operation is factorised into two operations (indicated by striped boxes) that first only compute self-attention spatially, and then temporally.

Figure 4: Factorised encoder (Model 2). This model consists of two transformer encoders in series: the first models interactions between tokens extracted from the same temporal index to produce a latent representation per time-index. The second transformer models interactions between time steps. It thus corresponds to a "late fusion" of spatial- and temporal information.

Swin Transformer :

- Swin Transformer builds hierarchical feature maps by merging image patches in deeper layers compared to ViTs that produces feature maps of a single low resolution.
- It is enabled by shifted window to build hierarchical feature maps.

Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.

Video Swin Transformer :

Figure 3: An illustrated example of 3D shifted windows. The input size $T' \times H' \times W'$ is $8 \times 8 \times 8$, and the 3D window size $P \times M \times M$ is $4 \times 4 \times 4$. As layer *l* adopts regular window partitioning, the number of windows in layer *l* is $2 \times 2 \times 2 = 8$. For layer *l*+1, as the windows are shifted by $(\frac{P}{2}, \frac{M}{2}, \frac{M}{2}) = (2, 2, 2)$ tokens, the number of windows becomes $3 \times 3 \times 3 = 27$. Though the number of windows is increased, the efficient batch computation in [28] for the shifted configuration can be followed, such that the final number of windows for computation is still 8.

Figure 1: Overall architecture of Video Swin Transformer (tiny version, referred to as Swin-T).

Figure 2: An illustration of two successive Video Swin Transformer blocks.

Masked Auto Encoder (MAE):

- MAE are scalable self-supervised learners for computer vision ~
- Mask random patches of the input image and reconstruct the missing pixels
- Asymmetric Encoder-Decoder Architecture
 - Visible subset of patches (without mask tokens) \rightarrow Encoder
 - Latent representation & Mask tokens \rightarrow **Decoder** (lightweight)
- Masking high proportion of the input image, e.g., 75%, yields a non-trivial and meaningful self-supervisory task
- Accelerate training (by 3× or more) and improves accuracy
- Learning high-capacity models that generalizes well
 - Vanilla ViT-H [] achieves the best accuracy (87.8%) among methods that use only ImageNet-1K data
- Transfer performance in downstream tasks outperforms supervised pretraining and shows promising scaling behavior

Background of MAE::

Autoencoder

- Encoder maps an input to a latent representation \checkmark
- Decoder reconstructs the input \checkmark
- E.g., PCA and k-means are autoencoders \checkmark
- Denoising autoencoders (DAE) [1] are a class of autoencoders that corrupt an \checkmark input signal and learn to reconstruct the original, uncorrupted signal
- A series of methods can be thought of as a generalized DAE under different corruptions, e.g., masking pixels or removing color channels

Self-supervised Learning

- ✓ Early self-supervised learning approaches often focused on different pretext tasks [] for pre-training
- Contrastive learning [] has been popular, e.g., [], which models image \checkmark similarity and dissimilarity (or only similarity []) between two or more views
- Contrastive and related methods strongly depend on data augmentation [] \checkmark
- Autoencoding pursues a conceptually different direction, and it exhibits \checkmark different behaviors

Figure 1. **Our MAE architecture**. During pre-training, a large random subset of image patches (*e.g.*, 75%) is masked out. The encoder is applied to the small subset of *visible patches*. Mask tokens are introduced *after* the encoder, and the full set of encoded patches and mask tokens is processed by a small decoder that reconstructs the original image in pixels. After pre-training, the decoder is discarded and the encoder is applied to uncorrupted images to produce representations for recognition tasks.

VideoMAE::

Figure 1: VideoMAE performs the task of masking random cubes and reconstructing the missing ones with an asymmetric encoder-decoder architecture. Due to high redundancy and temporal correlation in videos, we present the customized design of tube masking with an extremely high ratio (90% to 95%). This simple design enables us to create a more challenging and meaningful self-supervised task to make the learned representations capture more useful spatiotemporal structures.

CLIP:: Contrastive Language-Image Pre-training

Background of Image-Text Pair

Image-Text Pairs dataset [N=1, T=1, H, W, C] Video-Text Pairs dataset [N=1, T>1, H, W, C] Multi-Modal Massive Web (M3W) dataset [N>1, T=1, H, W, C]

- N: Number of visual inputs for a single example
- T: Number of video frames
- H, W, C: height, width, color channels

This is a picture of my cat.

CLIP:: Contrastive Language-Image Pre-training

- **400** million (image, text) pairs collected from Internet.
- Trained modifications of **ResNet-50** and **ViT-B**
- Batch size 32 768 for 32 epochs
- The largest ResNet model, RN50x64, took 18 days to train on 592 V100 GPUs while the largest Vision Transformer took 12 days on 256 V100 GPUs

CLIP for Zero-shot Classification

Figure 5. Zero-shot CLIP is competitive with a fully supervised baseline. Across a 27 dataset eval suite, a zero-shot CLIP classifier outperforms a fully supervised linear classifier fitted on ResNet-50 features on 16 datasets, including ImageNet.

CLIP Limitations ::

- poor generalization to images not covered in its pre-training dataset (MNIST)
- counting the number of objects in an image
- predicting how close the nearest object is in a photo
- CLIP's zero-shot classifiers can be sensitive to wording or phrasing and sometimes require trial and error "prompt engineering" to perform well.

Granny Smith	85.6%
iPod	0.4%
library	0.0%
pizza	0.0%
toaster	0.0%
dough	0.1%
Granny Smith	0.1%
iPod	99.7%
library	0.0%
pizza	0.0%
toaster	0.0%
dough	0.0%

Summary::

Transformer Models

Multi-Head Attention . . . Embedded

CLIP:Vision-language

Thank you for your attention!

